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Abstract

In this paper, we argue that two ontological assump­
tions in the Bohr model of the atom are actually sup­
ported by the latter quantum mechanics. They are: (1) 
electrons are particles; and (2) they undergo discon­
tinuous jumps. There are three main steps to reach this 
conclusion. First of all, according to protective meas­
urements in quantum mechanics, the charge of a 
charged quantum system such as an electron is distrib­
uted throughout space, and the charge density in each 
position is proportional to the modulus squared of its 
wave function there. Next, the superposition principle 
of quantum mechanics requires that the charge distri­
bution is effective, that is, it is formed by the ergodic 
motion of a localized particle with the total charge of 
the system. Lastly, the consistency of the formed distri­
bution with that predicted by quantum mechanics fur­
ther requires that the ergodic motion of the particle is 
discontinuous, and the probability density that the 
particle appears in every position is equal to the modu­
lus squared of its wave function there. Therefore, quan­

45°

SC
I.D

A
N

.M
. I 

• O
N

E H
U

N
D

RE
D

 Y
EA

RS
 O

F T
H

E 
BO

H
R 

A
TO

M
: PR

O
CE

ED
IN

G
S F

RO
M

 A 
CO

N
FE

RE
N

CE



SCI. DAN. M. I HOW DO ELECTRONS MOVE IN ATOMS?

turn mechanics seems to imply that microscopic parti­
cles such as electrons are indeed particles, and their 
motion is discontinuous and random. This new picture 
of quantum reality may be regarded as an extension to 
the discontinuous quantum jumps assumed by Niels 
Bohr in his original atomic model.

Keywords: Niels Bohr; atomic theory; electron orbits; 
wave function; particle ontology; discontinuous jumps; 
protective measurements; random discontinuous mo­
tion of particles.

1. Introduction

Niels Bohr proposed what is now called the Bohr model of the atom 
in 1913 / He suggested that electrons are particles and they undergo 
two kinds of motion in atoms; they either move continuously 
around the nucleus in certain stationary orbits or discontinuously 
jump between these orbits. The Bohr model was subsequently re­
placed by quantum mechanics, in which the physical state of an 
electron is described by a wave function.8 What, then, does the wave 
function represent? Exactly what are electrons? And how do they 
move in atoms?

The physical meaning of the wave function has been an impor­
tant interpretative problem of quantum mechanics. The standard 
assumption is that the wave function of an electron is a probability 
amplitude, and its modulus squared gives the probability density of 
finding the electron in a certain location at a given instant.3 This is 
usually called the probability interpretation of the wave function. 
Notwithstanding its great success, this interpretation is not wholly 
satisfactory because it resorts to the vague concept of measure­
ment.4 Recently a new analysis has strongly suggested that the wave

1. Bohr (1913).
2. Schrödinger (1926).
3. Born (1926).
4. See, e.g., Bell (1990). 
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function not only gives the probability of obtaining different out­
comes, but also may offer a faithful representation of reality.5 This 
analysis confirms the earlier result based on protective measurement,6 
which is a method to measure the expectation values of observables 
on a single quantum system, and it shows that the standard proba­
bility interpretation of the wave function is ripe for rethinking. In 
fact, the realistic view of the wave function is already a common as­
sumption in the main alternatives to quantum mechanics such as 
the de Broglie-Bohm theory and the many-worlds interpretation. 
Unfortunately, however, the precise meaning of the wave function 
is still an unresolved issue in these theories.

5. Pusey, Barrett and Rudolph (2012).
6. Aharonov and Vaidman (1993); Aharonov, Anandan and Vaidman (1993).
7. For a more detailed analysis see Gao (2011a), (2011b), (2013b), (2014).

In this article, we will argue that a new analysis of the mass and 
charge distributions of a quantum system in terms of protective 
measurements may help answer the above questions.7 According to 
this analysis, microscopic particles such as electrons are indeed par­
ticles, but their motion is never continuous but always discontinu­
ous and random. Moreover, the wave function represents the state 
of random discontinuous motion of particles, and in particular, the 
modulus squared of the wave function gives the probability density 
for these particles being in certain locations. In some sense, this 
new picture of quantum reality may be regarded as an extension to 
Bohr’s discontinuous quantum jumps.

2. Measuring the state of a quantum system

The meaning of the wave function in quantum mechanics is often 
analyzed in the context of conventional (impulsive) measurements, 
for which the coupling interaction between the measured system 
and the measuring device is of short duration and strong. As a re­
sult, even though the wave function of a quantum system is in gen­
eral extended over space, an ideal position measurement can only 
detect the system in a random position in space. Then it is unsur­
prising that the wave function is assumed to be related to the prob­

452



SCI. DAN. M. I HOW DO ELECTRONS MOVE IN ATOMS?

ability of the random measurement result by the standard probabil­
ity interpretation. This also indicates that conventional measure­
ments cannot obtain enough information about a single quantum 
system to determine what physical state its wave function repre­
sents.

Fortunately, it has been realized that the physical state of a single 
quantum system can be protectively measured.8 During a protective 
measurement, the measured state is protected by an appropriate 
procedure (e.g. via the quantum Zeno effect) so that it neither 
changes nor becomes entangled with the state of the measuring de­
vice appreciably. In general, the measured state needs to be known 
beforehand in order to arrange a proper protection. In this way, 
such protective measurements can measure the expectation values 
of observables on a single quantum system, and in particular, the 
mass and charge distributions of a quantum system as one part of its 
physical state can be measured as expectation values of certain ob­
servables. Since the principle of protective measurement is inde­
pendent of the controversial collapse postulate, its result as predict­
ed by quantum mechanics can be used to investigate the meaning of 
the wave function. It can be expected that protective measurements 
will be realized in the near future with the rapid development of 
quantum technologies.9 10

8. Aharonov and Vaidman (1993); Aharonov, Anandan and Vaidman (1993). Note 
that the earlier objections to the validity and meaning of protective measurements 
have been answered. Aharonov, Anandan and Vaidman (1996); Dass and Qureshi 
(1999); Vaidman (2009); Gao (2013a).
g. Cf. Lundeen et al. (2011).
10. See the appendix for an introduction of this important result.
11. Schrödinger (1926).

According to protective measurement, the charge of a charged 
quantum system such as an electron is distributed throughout 
space, and the charge density in each position is proportional to the 
modulus squared of the wave function of the system there.” His­
torically, the charge density interpretation for electrons was origi­
nally suggested by Schrödinger when he introduced the wave func­
tion and founded wave mechanics.11 Schrödinger clearly realized 
that the charge density cannot be classical because his equation 
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does not include the usual classical interaction between the densi­
ties. Presumably since it was thought that the charge density could 
not be measured and also lacked a consistent physical picture, this 
initial interpretation of the wave function was soon rejected and re­
placed by Born’s probability interpretation.18 Now protective meas­
urement re-endows the charge distribution of an electron with real­
ity by a more convincing argument. The question then is how to 
find a consistent physical explanation for it. Our following analysis 
can be regarded as a further development of Schrodinger’s original 
idea to some extent. The twist is: that the charge distribution is not 
classical does not imply its non-existence; rather, its existence may 
point to a new, non-classical picture of quantum reality hiding be­
hind the wave function.

i2. Born (1926).

3. Electrons are particles

The key to unveiling the meaning of the wave function is to find the 
physical origin of the charge distribution. The charge distribution 
of a quantum system such as an electron has two possible forms: it 
is either real or effective. The distribution being real means that it 
exists throughout space at one and the same time, e.g., there are dif­
ferent charges in different positions at any instant. The distribution 
being effective means that at every instant there is only a localized, 
point-like particle with the total charge of the system, and its mo­
tion during an infinitesimal time interval around the instant forms 
the effective distribution at the instant. Concretely speaking, at a 
particular instant the charge density of the particle in each position 
is either zero (if the particle is not there) or singular (if the particle 
is there), while the time average of the density during an infinitesi­
mal time interval around the instant gives the effective charge den­
sity. Moreover, the motion of the particle is ergodic in the sense that 
the integral of the generated charge density in any region is required 
to be equal to the expectation value of the total charge in the re­
gion.

If the charge distribution is real, then it is arguably that any two 2 
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parts of the distribution (e.g., the two wavepackets in box 1 and box 
2 in the example given in the Appendix), like two electrons, will 
also have the same form of electrostatic interaction as that between 
two electrons, which is described by the potential term in the 
Schrödinger equation. The existence of such electrostatic self-inter­
action for individual quantum systems contradicts the superposi­
tion principle of quantum mechanics (at least for microscopic sys­
tems such as electrons). Moreover, the existence of the electrostatic 
self-interaction for the charge distribution of an electron is also in­
compatible with experimental observations. For example, for the 
electron in the hydrogen atom, since the potential of the electro­
static self-interaction is of the same order as the Coulomb potential 
produced by the nucleus, the energy levels of hydrogen atoms 
would be remarkably different from those predicted by quantum 
mechanics and confirmed by experiments if there existed such elec­
trostatic self-interaction. By contrast, if the charge distribution is 
effective, then it seems natural that there will exist no electrostatic 
self-interaction of the effective distribution, as there is only a local­
ized particle at every instant. This is consistent with the superposi­
tion principle of quantum mechanics and experimental observa­
tions.

To sum up, we have argued that the superposition principle of 
quantum mechanics requires that the charge distribution of a quan­
tum system such as an electron is not real but effective; at every in­
stant there is only a localized particle with the total charge of the 
system, while during an infinitesimal time interval around the in­
stant the ergodic motion of the particle forms the effective charge 
distribution, and the charge density in each position is proportional 
to the modulus squared of the wave function of the system there. In 
short, electrons are particles, and their charge distributions in space, 
which are measureable by protective measurements, are formed by 
the ergodic motion of these particles.
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4. Particles move in a discontinuous and random way

The next question is which sort of ergodic motion the particles un­
dergo. If the ergodic motion of a particle is continuous, then it can 
only form the mass and charge distributions during a finite time 
interval. But the mass and charge distributions of a quantum system 
at each instant, which is proportional to the modulus squared of the 
wave function of the system at the instant, is required to be formed 
during an infinitesimal time interval around the instant.13 Thus it 
seems that the ergodic motion of the particle cannot be continuous. 
This conclusion can also be reached by analyzing a specific exam­
ple. Consider an electron in a superposition of two energy eigen­
states in two boxes t/q (x) + y2 G). In this example, even if one as­
sumes that the electron can move with infinite velocity, it cannot 
continuously move from one box to another due to the restriction of 
box walls.14 Therefore, any sort of continuous motion cannot gener­
ate the effective charge distribution (x) + i//2(x)\2.

13. For instance, in the example given in the appendix, the trajectory of the electron 
wave packet is influenced by the effective charge in box 1 during an arbitrarily short 
time interval according to quantum mechanics.
14. One may object that this is merely an artifact of the idealization of infinite poten­
tial. However, even in this ideal situation, the ergodic model should also be able to 
generate the effective charge distribution by means of some sort of ergodic motion of 
the electron; otherwise it will be inconsistent with quantum mechanics.
15. Besides, for normalized wave functions, the (objective) probability current den­
sity must also be equal to the formed mass or charge flux density divided by the mass 
or charge of the particle.

On the other hand, in order that the ergodic motion of a particle 
forms the right mass and charge distributions, for which the mass 
and charge density in each position is proportional to the modulus 
squared of its wave function there, the (objective) probability den­
sity for the particle to appear in each position must be proportional 
to the modulus squared of its wave function there too (and for nor­
malized wave functions they should be equal).15 This is understand­
able, since that the mass and charge density is large in a position 
requires that the particle appears more frequently there. Moreover, 
from a logical point of view, the particle must also have an instanta- 
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neous property (as a probabilistic instantaneous condition) deter­
mining the probability density for it to appear in every position in 
space; otherwise the particle would not “know” how frequently it 
should appear in each position in space. This property is usually 
called indeterministic disposition or propensity in the literature.16

16. Note that the propensity here denotes single case propensity. In addition, it is 
worth emphasizing that the propensities possessed by the particles relate to their 
objective motion, not to the measurements on them.
17. Gao (2013b).

In summary, we have argued that the consistency of the formed 
mass and charge distribution with that predicted by quantum me­
chanics requires that the ergodic motion of a particle is discontinu­
ous, and the probability density for the particle to appear in every 
position is equal to the modulus squared of its wave function there. 
In other words, the ergodic motion of the particle is random and 
discontinuous.

5. Meaning of the wave function

According to the above analysis, microscopic particles such as elec­
trons are indeed particles. Here the concept of particle is used in its 
usual sense. A particle is a small localized object with mass and 
charge, and it is only in one position in space at an instant. Moreo­
ver, the motion of these particles is not continuous but discontinu­
ous and random in nature. We may say that an electron is a quan­
tum particle in the sense that its motion is not continuous motion 
described by classical mechanics, but random discontinuous mo­
tion described by quantum mechanics.

Unlike the deterministic continuous motion, the trajectory func­
tion x(t) can no longer provide a useful description for random dis­
continuous motion. It has been shown that the strict description of 
random discontinuous motion of a particle can be given based on 
the measure theory.17 Loosely speaking, the random discontinuous 
motion of the particle forms a particle “cloud” extending through­
out space (during an infinitesimal time interval around a given in­
stant t), and the state of motion of the particle is represented by the
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density and flux density of the cloud, denoted by p(x, t) and J(x, t), 
respectively, which satisfy the continuity equation dp(x, t)/dt + Vj(x, t) 
= 0. This is similar to the description of a classical fluid in hydrody­
namics. But their physical meanings are different. The particle 
cloud is formed by the random discontinuous motion of a single 
particle, and the density of the cloud, p(x, t), represents the probabil­
ity density for the particle to appear in position vat instant t, and it 
satisfies the normalization condition J p(x, t)dv = 1.

As we have argued in the last section, for a charged particle such 
as an electron, the cloud will be an electric cloud, and p(x, t) and j(x, 
t), when multiplied by the total charge of the particle, will be the 
(effective) charge density and electric flux density of the cloud, re­
spectively. Thus we have the following relations:

t) = |V’(-Bd)|2,

h

Correspondingly, the wave function i//(x, t) can be uniquely ex­
pressed by p(x, t) and j(x, t) (except for an overall phase factor). This 
means that the wave function i//(x, t) also provides a description of 
the state of random discontinuous motion of a particle.

This picture of motion of a single particle can be extended to the 
motion of many particles. The extension may explain the multi-di­
mensionality of the wave function. At a given instant, a quantum 
system of Aparticles can be represented by a point in a 3A-dimen- 

458



SCI. DAN. M. I HOW DO ELECTRONS MOVE IN ATOMS?

sional configuration space. During an infinitesimal time interval 
around the instant, these particles perform random discontinuous 
motion in the real space, and correspondingly, this point performs 
random discontinuous motion in the configuration space and forms 
a cloud there. Then, similar to the single particle case, the state of 
the system is represented by the density and flux density of the 
cloud in the configuration space, p(x}, x2, ... , xN, t) and j(x} , x2, ..., 
xN, t), where the density pbq , x2 .... xN, t) represents the probability 
density of particle 1 appearing in position Xj and particle 2 appear­
ing in position x2 and particle N appearing in position xN ,a Since 
these two quantities are defined not in the real three-dimensional 
space, but in the 3N-dimensional configuration space, the many­
particle wave function, which is composed of these two quantities, 
is also defined in the 3N-dimensional configuration space.

One important point needs to be emphasized here. Since the 
wave function in quantum mechanics is defined at a given instant, 
not during an infinitesimal time interval around a given instant, it 
should be regarded not simply as a description of the state of mo­
tion of particles, but more suitably as a description of an instantane­
ous property of the particles that determines their random discon­
tinuous motion at a deeper level.19 In particular, the modulus 
squared of the wave function determines the probability density for 
the particles to appear in certain positions in space. By contrast, the 
density and flux density of the particle cloud, which are defined 
during an infinitesimal time interval around a given instant, are 
only a description of the state of the resulting random discontinu­
ous motion of particles, and they are determined by the wave func­
tion. In this sense, we may say that the motion of particles is “guid­
ed” by their wave function in a probabilistic way.

18. When these A?particles are independent, the density/X-v, , x2.... . xN. f) can be re­
duced to the direct product of the density for each particle, namely p(x2 ,x2 xN,f) 
= nLiP^i,ty

19. For a many-particle system in an entangled state, this property is possessed by the 
whole system.
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6. Conclusions

In this article, we have argued that two ontological assumptions in 
Bohr’s original atomic model, which are (1) electrons are particles; 
and (2) they undergo discontinuous jumps, are actually supported 
by quantum mechanics. There are three main steps to reach this 
conclusion. First of all, protective measurement in quantum me­
chanics shows that the charge of a charged quantum system such as 
an electron is distributed throughout space, and the charge density 
in each position is proportional to the modulus squared of its wave 
function there. Next, the superposition principle of quantum me­
chanics requires that the charge distribution is effective, that is, it is 
formed by the ergodic motion of a localized particle with the total 
charge of the system. Lastly, the consistency of the formed distribu­
tion with that predicted by quantum mechanics requires that the 
ergodic motion of the particle is discontinuous, and the probability 
density of the particle appearing in every position is equal to the 
modulus squared of its wave function there.

Therefore, quantum mechanics seems to imply that microscopic 
particles such as electrons are indeed particles, and their motion is 
discontinuous and random. Moreover, the wave function describes 
the state of random discontinuous motion of particles, and at a 
deeper level, it represents the dispositional property of the parti­
cles that determines their random discontinuous motion. In par­
ticular, the modulus squared of the wave function not only gives 
the probability density for the particles beingfound in certain loca­
tions as the standard probability interpretation assumes, but also 
gives the probability density for the particles />m^there.so This new 
picture of quantum reality may be regarded as an extension to the 
discontinuous quantum jumps assumed by Niels Bohr in his atom­
ic model.

20. It will be interesting to see how this new interpretation of the wave function can 
be extended to quantum field theory and what it implies for the solution to the meas­
urement problem. For an initial analysis see Gao (2013b).
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Appendix: Protective measurement of the charge distribu­
tion of a charged quantum system

Since the existence of the charge distribution of a charged quantum 
system is the basis of our analysis of the meaning of the wave func­
tion, we will briefly introduce this important result here.®

Consider a protective measurement of the charge of a quantum 
system with charge (9 in a small spatial region (’having volume v. 
This is equivalent to measuring the following observable:

if x e V, 
if x y V.

A protective measurement of A in a general superposition state t) 
yields

(A) = Q / |y(a:,t)|2dv,
Jv

which gives the charge of the system in the region I’. When v —> 0 
and after performing measurements in sufficiently many regions V, 
we can find the charge density everywhere in space/8 which turns 
out to bep0 (x, t) = O\i//(x, t)|2.

This result can be illustrated by a specific example. Consider a 
quantum system with charge 0 whose spatial wave function is

if.'(x, t) = a4'i(x,t) + btfoi'X, t),

where t/q (x, t) and i//2 (x, t) are two normalized wave functions respec­
tively localized in their ground states in two small boxes 1 and 2, 
and |n|2 + \b\2 = 1. A measuring electron, whose initial state is a 
Gaussian wave packet narrow in both position and momentum, is 
shot along a straight line near box 1 and perpendicular to the line

21. For a more detailed analysis, see Aharonov and Vaidman (1993), Aharonov, Anan- 
dan and Vaidman (1993), (1996), and Gao (2013b).
22. Similarly, we can protectively measure another observable B = + VA).
Such measurements will give the electric flux density jQ(x,t) = - øVø*)
everywhere in space. According to the Schrödinger equation, the charge density and 
electric flux density satisfy the continuity equation øpQ(æ,t)/øt + V)g(x,t) = 0.
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Figure 2. Scheme of a protective measurement of the charge distribution of 
a quantum system.

of separation between the boxes. The electron is detected on a 
screen after passing by box 1. Suppose the separation between the 
boxes is large enough so that a charge Q in box 2 has no observable 
influence on the electron. Then if the system is in box 2, namely |n|2 
= 0, the trajectory of the electron wave packet will be a straight line 
as indicated by position “0” in Figure 2, indicating that there is no 
charge in box 1. If the system is in box 1, namely |n|2 = 1, the trajec­
tory of the electron wave packet will be deviated by the electric field 
of the system by a maximum amount as indicated by position “1” in 
Figure 2, indicating that there is a charge O in box 1. These two 
measurements are conventional measurements of the eigenstates of 
the system’s charge in box 1, and their results can reveal the actual 
charge distribution in box 1. However, when 0 < |n|2 < 1, i.e., when 
the measured system is in a superposition of two eigenstates of its 
charge in box 1, it is well known that such conventional measure­
ments cannot detect the actual charge distribution in box 1.

Now let us make a protective measurement of the charge of the 
system in box 1 for the general superposition state. Since the state 

t) is degenerate with its orthogonal state t/ (x, t) = b * (x, t) - a*  
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i//2 (x, t), we need an artificial protection procedure to remove the 
degeneracy, e.g., joining the two boxes with a long tube whose di­
ameter is small compared to the size of the box. By this protection 
^(x, t) will be a nondegenerate energy eigenstate. The adiabaticity 
condition and the weakly interacting condition, which are required 
for a protective measurement, can be further satisfied when assum­
ing that (1) the measuring time of the electron is long compared to 
h/\E, where AE is the smallest of the energy differences between ^(x, 
t) and the other energy eigenstates, and (2) at all times the potential 
energy of interaction between the electron and the system is small 
compared to AE. Then the measurement by means of the electron 
trajectory is a protective measurement, and the trajectory of the 
electron wave packet is only influenced by the expectation value of 
the charge of the system in box 1. As a result, the electron wave 
packet will reach the position ‘jn|2 ” between “0” and “1” on the 
screen as denoted in Figure 2, indicating that there is a charge |n|2 O 
in box 1.

In conclusion, protective measurement shows that the charge of 
a charged quantum system such as an electron is distributed 
throughout space, and the charge density in each position is pro­
portional to the modulus squared of its wave function there.
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